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On the Relation Between Stable Matrix
Fraction Factorizations and Regulable

Realizations of Linear Systems
Over Rings

PRAMOD P. KHARGONEKAR ANiD EDUARDO D. SONTAG

Abstract -Vahous n.pes of transfer mairix fi toriiation, are of interest computer. In this case one uses the ring of integers mod r
%hen designing regulators for generali/ed t pe%' of linear %.',tem,, Idela) i osludN a class of systems which are. in a sense, nonlinear.
differential. 2-1). and families of %vltem%). This paper studie. the esitencee
of stable and of %able proper factoritations. in the contet of the the .' of Yet another example of these generalized classes of Systems

.s%Iems over ring,. Factorabilirs is related to %tabilizabilit. and detectabil- is the situation in w hich one is interested in the study, of
it) properties of realizations of the transfer matri\. parameterized classes of linear sstems: this may be ap-

proached through the study of systems whose coefficients
1. INTRODUCTION are functions of the parameters. with these functions ha'-

ing a specific structure (polynomial. analytic): the solution
T HIS paper is motivated by recent research on the to a synthesis problem over the ring will provide a para-

regulation ("servo problem" ) of certain classes of con- meterized family of solutions to the corresponding problem
trol systems which are "finite dimensional" and "linear" in for each system in the family. The literature on systems
a generalized sense. In contrast to the more standard linear over rings" is by now rather wide. and the reader is
finite dimensional case. linearity enters here in a more referred to the surveys Kamen 1151 and Sontag 1261. (281.
abstract sense, via the action of rings of operators or in and to the various papers on the subject in Byrnes and
terms of constraints on the quantities involved. For exam- Martin [4]. 151 for further motivations and examples.
pie. take a controlled delay equation like Some of the generalized kinds of linear systems have

(dxit)(t)=xt) + (t - l)- u( -2) (II.) been traditionally treated by other methods. This is espe-
cially so of various types of distributed systems. which can

whose natural state space is an infinite dimensional func- be studied via functional-analytic techniques or through
tion space. This equation can be seen as a "finite dimen- the use of "frequency domain" (transfer matrix) design
sional" object if one introduces a ring of delay operators tools (see, e.g.. Callier and Desoer [6]). We are interested
RIO]. where (Ox)(t) tx( - I), and then writes here in the comparison to these latter methods, which

(dx/dt)(t) (I +30)x(t)+( -O 2 )u(i). (1.2) involve an input/output approach in terms of various
factorizations of transfer matrices (see, for instance, Youla

This point of view sugests the use of methods from the etal. [31] and Desoer et al. [7]). The systems over rings
usual theory in which coefficients of x(t) and u(t) are approach is based on generalizations of state space tech-
constant, but generalized to polynomial coefficients. In niques and in relation to the corresponding / maps. The
another example. when dealing with a discrete time system main objective of this paper is to clarify the relationships

x(t + 1) = Fx(t) + Gu( t). (1.3) between, on the one hand, the type of factorability assump-

one may want to restrict all control u(i) and state values tions made in the frequency domain approach. and on the

x(t). as well as the entries of F and G to be integers: it is other hand, properties of realizations and i/O maps over

natural to model such restricted linear systems as systems rings. It is not our purpose here to study problems of

over the ring of integers. In a variation of this last example, optimality. nor to characterize the class of all regulators
achieving stability for a given plant. we concentrate solelyall quantities may be evaluated only modulo a fixed num-

ber r; for instance. r = 2', 1 = word length of a given on existence questions. The characterizations to be given in
terms of stabilizability and detectability of realizations

Manuscript received January 13. 1981: revised Ma, 27. 1981. Paper permit an intuitive understanding of many of the factoriza-
recommended by E. W. Kamen. Chairman of the Lincar Systems Com-
mittee. This work was supported by U.S. Army Research Grant DAA( tions which employ rings of stable transfer functions. These
29-80-C0050 and U.S. Air Force (rants AFOSR-76-3034 ModID and factorizations can, in turn, be used in the study of other
AFOSR-WO) 196.

P. P. Khargonekar is with the Center for Mathematical System Theory control-theoretic problems (output regulation. tracking, and
and the Department of Electrical Engineering. University of Florida. disturbance rejection). Furthermore, some of the criteria
Gainesville. FL 32611.

E. D. Sontag is with the Department of Mathematics, Rutgers Univer. given are useful in checking whether or not a given transfer
sity. New Brunswick. NJ 08903. matrix admits a factorization of the type needed, while

0018-9286/82/0600-0627$00.75 C 1982 IEEE
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other results exhibit the relations between existence of identified with their matrices in any fixed basis. with the
factorizations of different kinds, same notation used for a map and its matrix. The integer

It is important to note two major differences between n( X) will denote the minimal possible cardinafity of a set
our approach here and that in recent transfer matrix design of generators for the module X. /All "modules" X of
methods. The first is that factorization and realization interest in definitions and statements can be assumed to be
questions are considered here always in the context of a free, i.e.. sets of column vectors X = R". where ni X) n.
particular ring. For example, assume that one studies delay endowed with the coordinatewise operations. Tsko arbi-
differential systems modeled over a ring R[O,. - .,0, where trary integers rn. p will be used to ind cate number of input
0, is an a,-second delay, for some rationally independent and output channels, respectively. When discussing an%
numbers a,. Then all realizations, regulators. etc.. are auto- given system or transfer matrix. both the input- and out-
matically systems over the same ring. i.e.. delay systems put-value sets U: R"' and Y: = R" will he assumed
whose delays are all integer combinations of the same basic fixed.
length a,'s. In order to study more general realizations or A system =X, F. G. H. J ) is given b a projective
regulators, one changes the base ring (for example. enlarges module X (the state space) and linear maps F: X - A'. 6:
it to include more general operators from a suitable distri- U X, H: X- Y. and J: U Y. When J = 0. one has a
bution ring as in Kamen [16J). Another major difference strictly causal system: for such systems one drops J from
here is that causality is explicitly considered via a special the description.
role for a delay (in discrete-time) or differentiation (in Most rings that have appeared in the system theory
continuous-time) operator : in the transfer matrices. This literature are projective-free. i.e.. projective modules over R
allows the realization of systems via difference or differen- are free. This includes polynomial rings in any number of
tial operators, depending on the interpretation of -. variables with coefficients in a field. rings of continuous

functions on contractible spaces. and principal ideal do-
mains. Over such rings a system can then be thought of as

II. SYSTEMS AND TRANSFER MATRICES a collection of matrices of appropriate sizes. Projective
modules must still be used in developing the theory, how-

The results in this paper cannot be established without ever, since most constructions result in these.
employing certain abstract concepts and results from com- /A system (R". F, G, H, J) is given by matrices F. G. H.
mutative algebra. However, all of the results can be trans- J of sizes n X n, n X m, p X n, and p> in. respectively.
lated into "concrete" matrix theoretic terms for most base strictly causal if J = 0. For instance, over R = R[0] a "svs-
rings of system-theoretic interest, like a polynomial ring tem" is really a family of classical linear systems
K[O.- -..,,,] of polynomials in r variables with real (K =R) (F(O). G(O). H(O), J(O)). parameterized by 0. These
or complex (K = C) coefficients, or the ring of integers, matrices can be seen as representing a discrete or continu-
Developing the theory only for such rings would be unnat- ous time linear system. In order to fix ideas, we shall follow
ural, since proofs would still be basically the same, but this example through the paper as applied to continuous-
would have to be complemented with repeated use of the time systems./
equivalences. e.g.. "projective= free" (see below), which It is useful to introduce the discrete-time interpretation of
hold over these special rings. Furthermore, some rings for a system. This corresponds to thinking of E as determining
which the full "abstract" statements are needed are them- a set of equations
selves of interest in system theory. e.g.. certain residue
rings. We shall therefore proceed in the following way. If x(t + 1) = Fx(t )+ Gu( t). (2. Ia)
the translation of an abstract concept does not follow- for y(t) = Hx(t)+ Ju(t) (2. 1 b)
the above-mentioned rings-from previously given transla-
tions, it will be given enclosed in slashes (/ ... /) after the where u(t). x(t), and y(t) denote input. state. and output
concept is introduced. Further, at various points the even values at integer times t. The use of (2.1) permits us to give
more particular case of a one-variable polynomial ring many of the definitions, and to interpret the results in an
R[0] will be used as an illustration, and in the last section intuitive way even if one is interested in other interpreta-
an example is given which is also based on this ring. tions of the notion of system (e.g., delay-differential).

In all that follows, R is an arbitrary, but fixed commuta- Whatever definitions are given using the discrete time
tive ring (with identity). /Let R = integers or R = real or interpretation can be translated into algebraic properties of
complex r-variable polynomial ring./ For the undefined the maps defining a system. and in that sense they apply to
algebraic terms, the reader should consult Bourbaki Ill. all possible interpretations.
Examples of rings of system-theoretic interest are given in For example, it is natural to define a state to be reacha-
the references already mentioned: the last section will ble (from the origin) if it can be obtained as x(T) for some
further restrict R. The term "module" will always mean T>0 when starting from x(l) = 0 and solving (2.[a) with
finitely generated module over R or another ring if clear some sequence of inputs u(l),. • .u( T - 1). Let e, be the i th
from the context, and linear will always mean linear with element of the standard basis in U, g,: = Ge,, and n n( X).
respect to the ring and modules in question. Composition Then reachable states are precisely those in
of linear maps A. B will be denoted just by their juxtaposi-
tion AD. When modules are free, linear maps will be span{F'g,.j=O...,n-l.i=l....,m). (2.2)

L . .. . ...
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A system is reachable if every state is reachable. i.e.. if the this will not make any difference in what follows. Thus a
span in (2.2) is all of X. Since reachable states are them- polynomial in S represents a family of polynomials in
selves controllable to zero (see below), reachability is R[:]. parametefized by a scalar parameter 8. all of the
equivalent to the complete controllability (any state can be same degree. and all Hurwitz in the usual (continuous-time)
driven to any other state) of the discrete time interpreta- sense. The same type of example could, of course, be gisen
tion. One defines observability by the requirement that any for families parameterized by r - I variables.
two states be distinguishable by their input/output behav- Consider the ring R((: ')) of (formal) Laurent series
ior; this corresponds with n = n( X) to over R. This is the set consisting of all formal sums

a,- a,=0 for t -- t (2.4a)nl kerllF'= (0). (2.3)
,-0 where the ring operation is the usual multiplication. This

ring was shown to be very useful in realization over rings
(When R is an integral domain and X is free. (2.3) can bebyWmn30.adcnhcoserdtelasaoue
expressed as the usual Kalman observability condition.) A by Wyman [30], and can be considered itself as a module

canonical system is one that is both reachable and observa- over the subring RI.- consisting of polynomials on non-
ble. The dual of - is the system E': (X'. F'. H'. G', J') negative powers of -. Another subring of interest is the ring
where X' is the linear dual of X and F'. etc. indicate R[(:)] of rational power series: this is the ring of fractions
transpose (adjoint) maps. Note that m, p are reversed for T 'RI:]. where T is the set of polynomials in : which aretrasste. Adjn m oetha t or pstrongly obrerevbese admissible in the sense explained above. This ring of
the dual system. A coreachable (or 'strongly observable") fractions will be identified with the subring (and Rl:]-suh-
system is one whose dual is reachable: this concept may be module) of R((: ')) obtained by long division into nega-
interpreted in terms of reachability of "'observables" of the to e of : For a i ne by onstesystem. A split system is one that is both reachable and tive powers of:.. For a llurwitz ,et S one may consider the
syseachal. The splity ep disseda i bth rahabe and ring of fractions S 'R[--]. which can also be seen as a
coreachable. The concepts discussed in this paragraph are subring of the Laurent series ring. The elements of this
by now relatively well-known: the references given before fraction ring will be called stable rational functions. For
should be consulted for more details. the discrete time interpretation it is usefal to think of

/Reachabilitv means that block matrix g( ) = elements (2.4a) just as time functions

[G, FG,.., F" 'GI has a right inverse over the ring R:
coreachability means that [H', F'H',.. .. F')" H'] has a a(r) = a, (2.4b)
right inverse over R: split if both hold. O!'serrabiliti corre-
sponds to this last matrix being full-rank. Over R =- R01 with support bounded to the left. The stable ones nc,'A will
reachability is equivalent to the gcd of the minors of g(!) be interpreted as "(asymptotically) stable" sequences. and
being a unit, or to the matrix g(E')(O) being full-rank when the notation
evaluated at each complex number 0./ a(t)" - '0 (as t - x) (2.5)

For purposes of regulation one needs much less than
reachability and/or coreachability of a given system. In will be used for these. (The quotation marks in the notation
order to define the more general conditions, we first need are included in order to emphasize that. for a particular
some notion of stability and/or convergence. A purely Hurwitz set, these sequences may not converge in an\
algebraic way of introducing these is to postulate a set of reasonable sense. The "convergence" interpretation is very

stable" polynomials to be fixed throughout the construc- useful in guiding the proofs, as will be seen below, and the
tion. This idea was used by Morse [24]. Our approach here interest in applications is. of course, that in which either of
follows Hautus and Sontag [14], but is generalized to the these sequences indeed converge or they represent the
nonintegral domain case. A Hurwit: set S will be a multi- coefficients of an expansion of a transform of a function
plikitive subset of admissible polynomials in RI:! which which converges in the sense represented by the choice of
contains at least one polynomial z - a of degree one, and S.) A proper (respectively, stritli' proper) sequence (or
which is closed under associates. (A polynomial p(:) is series) will be one with a(t) = 0 for negative I (respectively.
called admissible in Khargonekar [201 if there exists another nonpositive t). i.e.. power series in : ' (respectively. with
polynomial h(z) such that the product ph has a monic no constant term). For rational series and integral domains
leading coefficient: for integral domains this means just R properness corresponds to having a representation
that the leading coefficient of p is a unit in R. Closed under p(:)/q(:) with deg( p) < deg(q) (" < " for strictly proper).
associates means that a(:)p(:) belongs to S whenever p(:) The subring of proper stable series will be denoted by
is in S and a(:) is a unit in R[zl for integral domains such pr( R, S). The same notations will also be used for the set
an a(:) is necessarily a constant.) The definitions and of Laurent series M((: 1)) over a module M. This is a
results to follow will always assume a Hurwitz set has been module over R((: ')) in the obvious way: the stable ele-
given. ments here are the elements of S 'All:] =(S IR[:1)®M,

/As a running example. for R -R18]. let S be the set of and these form a module over S 'R:]. For example. in
polynomials p(O. :) in RI:] which are monic in : and such the case M = R". S 'R":I is the set of all n Nectors of
that p( v. s) is not zero for any r real and s with nonnega- stable series.
tive real part. "Monic" can be taken to mean with leading /For our running example of continuous-time scalai-
coefficient in : equal to one. or simply a nonzero constant: parameter families, a series in p( R. S) represents a fami%
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of transfer functions p(O. :)/q(8 9z) each of which is or a
Hurwitz stable. The coefficients a, = a,(9) give, then, for left factorization
each 0 the expansion of the Laplace transform of the =Q lp, (2.8)
corresponding stable transfer function.,'

An (asymptotically) stable system is one for which the with P and Q either polynomial or rational matrices. (For
characteristic polynomial det(,l - F) is in S. (Since state the factorizations to be well-defined, we assume in the
spaces are projective. characteristic polynomials are well- polynomial case that Q is admissible. i.e.. that det Q is
defined up to associates, by the method in Khargonekar admissible in the sense defined before: in the rational case
1201.) , In our example. a stable system is, in fact, a family we assume that Q can he written as q 'Q-. with the
of continuous-time systems as before, such that each sys- polynomial q monic and the polynomial matrix Q^ admis-
tern in the family is stable., sible.) We are interested here in factorizations that satisf. a

A state x" is (null-) asVmptoticallv controllable (a.c.) if Bezout condition: for P and Q as in (2.7). this means that
there exists an (infinite) input sequence (u(t). t ; I) with there exist matrices A and B such that
u(t)' - '0 and such that the solution of (2.1a) with x(l)=
x^ also satisfies x(t)' '0. Asymptotically controllable AP + BQ =1; (2.9)
states form a submodule of X. A system is asvcontrollable if
every state is a.c. A system is detectable if its dual is for P and Q as in (2.8) one wants A and B with
asycontrollable. Note again that in the abstract setup there PA + BQ = 1. (2.10)
is no reason that these controllability concepts really should
correspond to any such concrete notion, although of course (In (2.9). B is square m by m. and A is m by p: dually for
this will be the case in the applications of interest (i.e.. (2.10).) Depending on the type of matrices A and B al-
choice of Hurwitz set). lowed in the above, as well as on the allowed P and Q, one

/For our example. a system (i.e., family of continuous- may then classify factorizations as: I) polynomial. 2) stahie.
time systems) is asycontrollable (respectively, detectable) and 3) proper stable, meaning that all the matrices appear-
iff each member of the family is asycontrollable ("stabiliz- ing- A. B, P, Q -must be of the corresponding type.
able" in the usual literature) (respectively, detectable): this The main goal of this paper is to relate the various types
is discussed in detail in Section VI. For nonscalar (real) of factorizations with the existence of realizations of differ-
parameters it is still an open problem whether or not ent kinds. One of these relations is already known as
asycontrollability of the family is equivalent to each system follows.
being stabilizable. but the above definition is still equiva- Theorem 2.11 [20]: The following statements are equiv-
lent to a number of "spectral" types of conditions (and for alent for any strictly proper transfer matrix W:
complex parameters the equivalence always holds): this is I) W admits a polynomial right factorization:
discussed in Hautus and Sontag [14]./ 2) W admits a polynomial left factorization:

A rational matrix or transfer matrix (with m inputs and p 3) W admits a split realization:
outputs) W = W, -I is a p X m matrix whose entries are in 4) the canonical realization '(W) is (projective) and
Ri(z)]. A [strictyI proper transfer matrix is one whose split.
entires are all (strictly) proper. Any system E gives rise to a /In 4). read " the canonical realization exists and is split."
corresponding proper transfer matrix W= W(2) defined In Emre and Khargonekar [I II it is proved that a (free)
by split system can be regulated in much the same way as in

the classical (linear finite-dimensional) case. RoughlN.
W(:) = H(' - F) G + J. (2.6) it is possible to achieve arbitrary dynamics both for the

When J= 0, W is strictly proper. Conversly, a (strictly) regulated input/output behavior and for the remainingproper W always admits a realizationv i.e.. a (strictly causal) (observer) nodes of the closed-loop (plant/ regulator) d,-namics. Moreover, the split condition can (e checked in
Y satisfying (2.6). In fact. it is known from the realization varis wsrectl o d(eiontag 26 1271 an

theory over rings how to construct for any given W a Karonear frthe sse Sjut reachable and
canonicalirealization. this realization does not appear to he Khargonekar 1201). If the system is just reachable and
that useful for regulation questions, however because the detectable, the same paper shows how essentially arbitrary
thatrsefupforeglation quaetis. hogever, bec ethe dynamics can be achieved for the regulated I/O behavior
correspondingwhile keeping the observer modes stable. Finally. Emre 10]
(except for special rings, like those in the last section). w neyn asycntllble and

Finally. we define a transfer matrix to be stable if each of proved that if the system is (o
its entries is stable. detectable, then it admits a stabilizing compensator. These

As remarked in the introduction, there has been interest results provide a strong motivation for the study of the

lately in various types of factorizations of transfer matrices, existence of spit. reachable/detectable, and asvcontrolla-One considers a hie /detectable realizations.
The existei"e of Bezout factorizations would appear to

rhtaoriatione rather restrictive when working over gs. A rcent

W= PQ (2.7) result of Lee and Olbrot 1221, however, established the
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genericity of reachability, over R = polynomial ring in r finite time n = n( X). More precisely, there exist sequences
variables, when the number of inputs m exceeds r. This x(t) and u(t) satisfying (2.1a) and such that x(l)- x^.
result could be. in principle, extended to one about generic- x(t ) = 0 for t > n. and u(t ) = 0 if t < 0 or t i n. This is
ity of the split condition, although the form that the precise proved in the same way as for finite dimensional systems
statement would take is not yet clear. This result would ovw:v Fields: by the Cayley- Hamilton theorem (which is
imply-via (2.4) and the results below-the genericity of .:!i over any commutative ring), one can write
the various types of Bezout factorability when dealing with I) I
systems with enough input and output channels. For '"few" F" = , F'. (3.3a)
channels, the split condition-i.e.. polynomial factorabil-
ity-is. of course, too strong. For instance, the (scalar) so for x^ in the span (2.2) one has that
transfer function p(8. z)!q(O, z) defined over R = R(f ,I

splits if and only if the plane complex curves determined F'x" - - 'F.^ F" ' 'Gu , (3.3b)
by p. q do not intersect. The other Bezout conditions are
not, in general, as strong however.

'Take. for instance, the case of real scalar families of for suitable u, in U. Thus the sequence
systems mentioned in our example. There, stable factora- u(1): = u, <. I t< n (3.4)
bility is equivalent to p. q having no common zeros with 0

(and 0 otherwise) results from x( I) x^ in xUi) = 0 forreal and Re s - 0. i.e.. no unstable pole/zero cancellations Equivalently.iterest po mi x() a 0(:
i > n. Equivalently, there exist polynomials x(:) and u(:)for any member of the family of systems./ o eresrcl esta uhta
of degree strictly less than n such that

111. POLYNOMIAL MATRIX INTERPRETATIONS (:1-F)(: "x(:))+G(: "u(:))=x. (3.5

Here the map in (3.1) is seen as a map between rational or
The definitions of reachability and asycontrollability Laurent series. We would like to conclude from here that

(and their duals) will be reformulated in a less intuitive. x^ is a.c.; however, a finite sequence is lot necessarily
but more useful way in this section. Note first that the stable (i.e., z may not be in the Hurwitz set S being
maps defining a system can be extended in the obvious considered). But the following may be used. Let x be
(pointwise) way to the spaces U((, I)). Y((z -')). and reachable, and consider the new system defined over the
X((z- 1)); these extensions are linear over R((z- I)) (and all same state space but with A: = F + al instead of the origi-
its subrings), and they will be denoted in the same way as nat F(here a is such that : - a is in S. and I is the identit,
the original maps. Consider now a fixed system 2 and map in X). The state x^ is still reachable in this new
Hurwitz set S. s)stem (just note that the generators of (2.21 using A are in

A state x^ is reachable iff there exist polynomials x(z) the span of the original ones and vice versa). So an
and u(z) such that (zl- F)x(z)+ Gu(z)= x'. This is just equation like (3.5) holds, with A in the place of F. Apply-
another way of saying that there is a fnite input sequence ing the substitution in R{(z)] (ring homomorphismj : -

- u(t). zero for positive t, which drives the state 0 (at some - a. there results an equation
time t< 0) to x(l) =.x^. Let (zl - F)x*(z) + Gu*(z) =x^ (3.6)

[zI--F.,G:XtzIGU[zI-Xiz (3.1) wherex*(z)=x(z-a)!(z-a)" and u*(:)=u(:-a)/

denote the map ;hat sends a pair of polynomials (x. u) into - a)" are both stable and strictly proper. We conclude as

(:1 - F)x + Gu, thought of as an RIz]-module map. The follows.

above then says that reachability is equivalent to X being Lemma 3.7: Reachable states are asymptotically

contained in the image of (3.1). Since X generates the controllable.

projective R(zl-module XIz], we have the following. Let A, B be (R-) modules. Elements of

Lemma 3.2: The following statements are equivalent for S - '(HomR(A, B))[z] can be naturally seen as S- 'R:]-

any system : module (or equivalently, I z]-module) maps from S 'Alz

I) Z is reachable; into S 'B[z]; when B is finitely presented (e.g.. if projec-

2) [zi- F. GI is onto; tive) every such map can be represented in this form (see

3) there exist linear maps M(z): X[zI - X1zl and N z]: Bourbaki [1, sect. 11.2.71). A fstrictly) proper map from

Xl: -" UfzJ with S 'A[z] into S- B[z) will be. by definition, one which is a
(strictly) proper element of S '(Homr(A. B))Xz] under

[M(z) 1this identification. A proper Rfz]-map from S 'Alz] into
[zi N(z) = i (in X[zJ). S 'Blz] can also be identified with an Rlzi-map from

pr(R, S)®A into pr(R. S)®B. /For all modules consist-

/Reachability is equivalent to right invertibility of [z1 ing of column vectors, identify matrices of rational func-
F,GJ over RIz./ tions with (rational) series whose coefficients are matrices./

Consider again the discrete time interpretation of 1. We Now we can obtain the following desired characteriza-
claim that any reachable state x^ is controllable to zero in tions.
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oanysystem : The following statements are equivalent [M(z) N(:)][1 F] =1 (3.12)

1) 1 is asvcontrollable,
2)1:1 - F. G : S 'Xyzonr S 'Ut - 'Xbe is onto; for coreachability and detectability. This equation can he

3) there exist linear maps M(.): S 'X[:] S ['KI again understood over the original spaces without dualizing

and N(:): S 'X~z] - S 'U[j with because all modules in the equations are projective and
thus also reflexive (double dual equal to the original mod-

[M(Z)=! in X ] :  ule).

(:1 -F.GI( MZ = I (inS 'X(zj):, The above results are especially interesting when X is a
free module. in that case. the conditions become just left or

4) there exist M. N proper as above, right invertibility with respect to stable or proper stable
Asvcontrollability is equivalent to [1: - F, G] having a matrices. Note also that Proposition 3.8. statement 4) is the

stable (proper stable) right inverse.,/ definition of stabilizability given in Hautus and Sontag
Prot f: Since X is projective, S 'XJ:J is projective [141, while Proposition 3.8. statement 3) is the one used by

o~er S 'Ri:]. so 2) and 3) are equivalent. Assume now Emre 1101. All these definitions are then equivalent to the
that 1) holds. Then any x in X is in the image of the map one given in Section 11.
in 2). Since X spans this image, 2) holds. We shall prove The definitions given here allow one to prove a number
now that 4) implies I) and that 3) implies 4). of facts in the "'natural" way. Take for instance the lemma

Let M(:) and N(:) be as in 4), and pick any x^ in X. Let after the following definition.
x*(-): = M(z)x^. u*(z): = N(z)x^. These are proper. Definition 3.13: A regulator for the strictly causal svs-
stable, and satisfy (3.6). Thus if x*(z) -- .x 1 + I+..., tern =(X. F.G. H) is a system =(X', A. B.C. D)
u* = :)uo + u -: +., comparing powers of : in (3.6). with input value set U(Y and output value set U. such
one concludes that x, = 0 and that x, - Gu o = x'. Since that the map
stable sequences form a submodule, we conclude that F+GDH GC ]

u*()- U) is also stable, and controls x, asymptotically to BH + BDH A + BXC: X

zero. But Gu is reachable, so by Lemma 3.7 it is also a.c.;

thus x" is a sum of a.c. states, and is a.c. itself. So 1) holds. (3.14)
Finally, we prove that 3) implies 4). Consider the map is stable. (Here B: = (B,. B,), and D acts only on the Y

[(z - a) '(zl - F).G]: component.) The system 1 is regulable if it admits such a
regulator.pr( R, S)( X + U) -pr( R, S )®X. (3.9) Lemma 3.15: The system I is regulable if and only if it

We shall prove that this map is onto for the shown domain is asycontrollable and detectable.
and codomain. It is enough for this to check that (3.9) is Proof: For the sufficiency part; see Emre 110]. We

prove here only the (easier) necessary part. In terms of theonto when reducing modulo every maximal ideal of discrete-time interpretation, the map in (3.14) is just the

pr( R, S) (i.e.. tensoring by the possible residue fields of the closed-oop dn a io the eo in of is and the

latter). These evaluations are of two types: i) those in closed-loop dynamics of the interconnection of 1 and Z'

which (z - a) ' reduces to zero, and 2) those that extend x(t + 1) Fx(t)+Gu(t). v(t) = Hx(t),
to the ring S - R[:]. This is because the latter can also be (3.16a)
seen as the ring of fractions of pr(R, S) with respect to the
multiplicative set generated by (z - a) '. The evaluations X"r1 (t + 1) = Ax"'(t)+ Bu(t)+ B2 y(t) ,
of type 1) (intuitively. "at z = oo") give the identity for the U() = x(t) + Dr(t). (316b)
first block in (3.9), so the map is indeed onto at these ideals
'see Hautus and Sontag [141 for more details). The evalua- Let x* be in X. and pick any x") * in Z. Since (3.14) is
tions of type 2) can be seen as reductions of those appear- stable, the sequence (x(t), xlr)(t)) obtained solving (3.16)
ing in the hypothesis 3), so they are also onto. Thus (3.9) is is stable. Thus the corresponding u(.) is a linear combina-
indeed onto. There exist, then, proper M(z), N(z) such tion of stable sequences, and so is stable itself. It follows
that that x* is a.c.; thus I is asycontrolable. and a dual

(z - F)M,(z)+ GN(z) =1 (3.10) argument establishes detectability. So Y is regulable. #

where M,(z) = (z - a)- 'M(z) is also proper. (In fact, even IV. STABLE FACTORIZATIONS
if only N(z) were known to be proper, the equation

We study here right factorizations W = PQ I of a trans-
M,(z)=(zi- F)- '(I-GN(z)) (3.11) fer matrix into stable matrices PQ which satisfy the

Bezout condition AP + BQ = I with A. B stable. If q is a
shows that M, is proper.) # common stable denominator for the entries of P and Q.

The statements in Lemma 3.2 and Proposition 3.8 can all then also W = YZ and CY -t DZ = I, where Y = qP.
be dualized into left invertibility conditions Z = q8. C = q 'A. and D = q 'B. Thus, when studying i

. . . . . .. __ .... t , . .. . . . .. ... . .. . .. . .. .... .. i - -. ... , )
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stable factorizations one ma, take P and Q to be poly- CHM(:l- F)LT+ CIINHLT= ClLT. (4.12)
nomial without loss of generality. CH I MGQ -t CH, NP = CH, LT. (4.13)

Assume that W = W(:) for a strictly causal detectable
E. By the dual of Proposition 3.8. there exist stable linear CH, MGQ + CH NP = CT=i -DQ.

maps M. N as in (3.12). If G would be the identity, then (4.14)

W= H(zI- F)- (4.1) So

and (3.12) shows that (4.1) is a stable factorization of W. If AP + BQ 1 (4.15)

G is present, but E is reachable, one may expect to be able where we denote
to somehow eliminate G, since every state is reachable.
This intuitive idea motivates the main result in this section. A: = CH, N and B: =CH MG + D. (4.16)

which generalizes the result in Hautus and Sontag 1i4, Both A and B are stable because C. D are polynomial and
Theorem 6.1 11 as follows. M, N are stable.

Theorem 4.2: A strictly proper transfer matrix W ad- Conversely, assume that WPQ - with PQ poly-

mits a stable right factorization if and only if it admits a nomial. and that (4.15) holds for some stable A, B.

reachable and detectable (strictly causal) realization. Consider the "Q realization" corresponding to this factori-
Proof: Let X = (X. F, G, H be reachable and detecta- zation of W. as in Khargonekar [20. Theorem 4.41. This is a

hne. with W4= W( .). Since X is projective. there is for reachable realization E = ( X. F, G. H). and all we need to
n=n(X) a map establish is that 1 is detectable. We again introduce H,.

H,: X- R" (4.3) etc., as in (4.3)-(4.5), and define

with R: =W1 Q= H,(:I-F) 'GQ. (4.17)

LH, = I = identity in X (4.4) Since the columns of Q are in the kernel (in fact, form a
f.sbasis) of the input-to-state map associated with E. it
for some L: R" - X. The reverse composition HL is justfolwthtRi.nfa.ap/om/mtrxByrcai-
the projection on X. which will be thought of as a submod- itylfws ther eis t polnomial ma x. B wth a
ule of R'. Consider the transfer matrix induced byity of Y there exist polynomial maps Y, Z with

(X.F.G, H): (l-F)Y+GZ=I=identityinX. (4.18)

W :=HJ(I-F) 'G. (4.5) Thus

Since 1, is a split system. there exist by Theorem 2.11 (zI- F) GZ=(_IF) 1y. (4.19)
polynomial matrices T, Q. C. and D with Q admissible Composing (4.15) with R to the left and with Q I to the
and right, and using (4.17) and (4.9) gives

W= TQ '(4.6) RAPQ '+RB=RQ-' (4.20)

CT+DQ=I. (4.7) RAW+-RB=W. (4,21)
Note that the image of W, (as a rational matrix) is included RAH(zi-F) GZ+RBZ=H,(:I-F) 'GZ.
in X((z ')) since H, has image in X. Thus the image of T is

also included in X((Z 1)), and so (4.22)
T= HLT. (4.8) RAH[(:/-F) _'-Y]+RBZ=HJ[(zI-F) '-Y].

Since H,(zl - F) 'G TQ-. it follows by (4.4) that (4.23)

(zi-F) 'G=LTQ ', or GQ=(zl-F)LT. (4.9)

M,(z- F)+ NH= H, (4.24)
Let

P: = HLT. (4.10) where

so that M:RBZ + H, Y- RAHY, N,: = RAH. (4.25)

W=HLWI=PQ ' (4.11) So M(zI-F)+NH=i with M:=LM, and N:=LN.
Note that M, N are stable because R. Y, Z are polynomial

This will be the desired factorization (note that P and Q and A. B are stable. So E is detectable.
are, in fact, polynomial). We will now show the Bezout By duality one also has the following.
property. Since I is detectable, there are linear maps M. N Theorem 4.26: A strictly proper transfer matrix W has a
as in (3.12). Composing with CI on the left and with LT stable left factorization if and only if it admits an
on the right, and applying (4.7), (4.8). and (4.9) gives asycontrollable and coreachable realization.
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Neither Theorem 4.2 nor Theorem 4.26 is a priori self- Let
dual: 11 ma% satisfy Theorem 4.2, but not Theorem 4.26. I
is natural to ask about the existence of (only) reguhle [t, .... tJ [] (4.32a)
realizations, which is a self-dual condition. If either left or

right factorizations exist for W. then Theorem 4.2 and be its matrix. Note that
Theorem 4.26 show that there are regulable realizations of
IV. The following result shows that (under weak extra (:1 - F )T- GQ = 0 (4.32h)
assumptions) the existence of a regulable realization in fact since the r, are in L. As the image of (4.31) is a direct
tmplhes that there are stable factorizations. The extra as- summand of S '( X9)U)[:]. there exist stable maps Y. Z
sumptions are on R and on the number of input or output giving a left inverse. i.e., with [1. Z 1[r,.-- .. t-,, or
channels. The (Krull) dimension of R (see. e.g.. Gilmer
112]) is denoted by dim R: note that for polynomial rings YT+ ZQ = 1. (4.33)
or power series rings over a field, in r variables, one has
dim R = r. In Section VI it will he seen that for principal We will now show that Q is admissible. Let p = det( :! - F):
ideal domains R no constraints are necessary and, in fact. then (:1 - F)adj(:I - F)= pl,, so the columns of
this holds for a slightly larger class of rings (see Remark
4.40). For more general R. we do not know if the assump- cof(:l - F)G (434)
tions on the number of input and output channels are pl I.
really necessary. Our proof uses the fact that the module L
in (4.30) is free, and this will. in general. be false. an of t fo

Theorem 4.27: Assume that either Pit = I or that p = 1,s
or that R is Noetherian with dim R= r < and QR = pi (4.35)
max{m., p} > r + I. Then the following properties are
equivalent for a strictly proper transfer matrix K. for some stable matrix R. Thus (det Q).(det R) -p" -

I) 14" has a stable left factorization: monic. and Q is indeed admissible. Now let P: IT (this

2) W has a stable right factorization: is well-defined because the image of T is included in

3) W has a regulable realization. S IX[:]). Then

Proof: Note that Theorem 4.2 and Theorem 4.26 give W H(:1 - F) G HTQ PQ '. (4.36)
that I) and 2) imply 3). Since 3) is self-dual, it is then
enough to prove that 3) implies 2). Let E: = ( X. F. G. H) We claim that this is a stable factorization of W. Since the
be an asycontrollable and detectable realization of W. We original system is detectable, there exist stable maps M. N
treat the case in which m satisfies the hypothesis: when p such that
satisfies the hypothesis, the theorem can be proved using
dual arguments. By asycontrollability, the map M(:1 - F)+ NH = 1. (4.37)

[:-F. - GI: S '(XU)[:] S 'X[-] (4.28) Multiplying on the right by (:I - F) 'GQ and on the left

by V.

is onto. Let L be its kernel, and denoteA: = S 'R[-]. Note YMGQ + YNP = YT = I - ZQ, (4.38)
that S Ti,:] = A"'. Thus

so
LeS 'X(J "'GS '[:]. (4.29)

AP + BQ = 1 (4.39)
Using projectivity. we may assume that S 'X[:] is included for the stable matrices A : =YN, B: 1 MG - 7.
in .4". n = n( X). and that there is some module Z with Remark 4.40: When R[:] is a Noetherian integral do-S 'x~z]eZ= A". SoReak44:WeR[]iaNoteannegld-

main of global dimension at most two, the ring S 'RI:] is
LOA"- A" . (4.30) projective-free. so that the module L in (4.30) is indeed

free. Thus for principal-ideal domains (pid's) the above
i.e.. L has a free complement (is stably free) and has rank abstract argument is valid with no restrictions on ,n. p. The
m. If n = I. L is free (see Lam [21. Theorem 4.11]). If R is "concrete" constructions in Section VI also give the result.
Noetherian of finite dimension r. then dim R[:] = r + I but they cannot be extended to non-pid's. We sketch here a
(see. e.g.. Gilmer 112. Theorem 30.5]) so m > r + I-> proof, provided by W. Vasconcelos. of the projective-free-
dim R[:] ;, dim A. thus one may apply Bass' cancellation ness claimed above. Take any projective S 1R[:-module P
theorem (see. e.g.. Lam 121. Theorem 7.31) to again con- and consider it as a direct summand of a suitable free
elude that L must be free. Let (v,.- . .c,,) be a basis of L. module (S R[,:])". Let M be the intersection in the latter
Without loss of generality, one may take the v, polynomial of the sets (R[:])" and P. so that in particular P = S 1M.
over R. Consider the one-to-one map Then M is a closed R1:]-submodule of (R[:])" -because

A' - A"*': e, - v, (4.31) P is closed in the larger module-and is therefore reflexive.
So M is a projective R[:-module. by Bass' dimension-2

whose image is included in the submodule S '( X(U )[z. theorem. It follows that T M = M[(:)] is projective over

./
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RI( :)]. But the latter is a ring of dimension one. so T 'Af Using (4.9).
is, in fact, free over R[(:), It follows that M itself is free
(Horrocks affine theorem), and so P = S 'At is also free. (:1 - F- GK )LT= (:1 - F )LT- GKLT GQ

as required. (5.6)

Since ( A. F t GK, U. H ) is again reachable, there is a right
V. SrRICTLY PROPER FACIORIZAIIONS Bezout equation as in Lemma 5.1-i), with A. B. C. and D

nthis section we there equal to :1 - F- GK. LT. G. and Q^. respectively.

t gBy (4.8) and (5.5) one also has an equation
zations. Intuitively. the argument explained before Theo-
rem 4.2 suggests that the existence of reachable and detec- (CHI + K )LT+ DQ = 1. (5.7)
table realizations should imply that of proper stable fac-
torizations. since M and N may be assumed both proper h Thus Lemma 5.1 applies over R[:] to give det Q r
(Proposition 3.8. statement 4). The problem is that one det(:l - F- GK). r a unit in RI:J (so in R). Thus Q^ is
should not introduce extra delays when "eliminating" G as stable. Let
discussed in that argument. This difficulty can be over-
come if one first finds a suitable stable bicausal isomor- Q1:=QQ (5.8)
phism to premuitiply the transfer matrix. The existence of Since Q is a polynomial and Q is stable, it follows th:z
such bicausal isomorphisms is known to be closely related Q, is stable. Also.
to problems of "constant" state feedback, as discussed in
the classical case by Hautus and Heymann (131. Construc- Q ((Q - KLT)Q ') '= (I - KLTQ )
tion of constant stabilizing feedback laws for systems over
rings is. in general. nontrivial (see. e.g., Kamen [17]. Byrnes I (I - K( :i - F) 'G) )

(3]. and Bumby et al. [2]). For principal ideal domains (see
Section VI) the result of Morse [231 ensures the existence of so Q, is also proper. Let
stabilizing K as needed in the result given here. This result
connects our setup with the "proper stable" case in Desoer P,: = PQ' (5.10)
et al. [7]. We shall assume that R is an integral domain, and
later note why the results also hold in general. A technical Then P, is stable and ;VW= P, Q . Since P, - WQ,. P, is
remark is needed first. also proper. It only remains to find a proper Bezout

Lemma 5.1: Let X. Y be projective R-modules. Let the condition on P, and Q,. By detectability, there are proper
linear maps A: Y- Y. B: X - Y. C: X -Y, and D: X- X stable M, N as in (3.12). Composing on the right by
satisfy A B = CD. Assume further that there exist linear (:I-F) GQ and using (4.8), we conclude that
maps M. N, P. and Q such that

1) AM + CN =I identity in Y. and MP + NGQ = LT. (5.11)
2) PB + QD I identity in X.

Then det A = r det D. for some unit r. Thus

Proof: Consider the linear maps Q = Q - KLT= Q - K( MP + NGQ)

f:= A and g:=[X I -KNG)Q-KMP. (5.12)
Write A: - KM and B: = I - KNG: these are stable and

(5.2) proper.
The same result is valid over nonintegral domains, but

Then fg is triangular with identity diagonal, so f is invert- the above rof hs te modified slightly. This is because

ible: say, det f = - r. The conclusion then follows from the the determinants in Lemma 5.1 may not be a prri defined.

equality for arbitrary projective X Y over a ring with nonconnected

I B 1 A 0] spectrum. But the proof of (5.2) uses only the case A = a
0. = A (5.3) characteristic polynomial and D = a map between free

modules, so that these are all well-defined up to associates.
# The dual of Theorem 5.4 relates asycontrollable and

e 5: coreachable realizations to the existence of proper stable
Theorem 5.4: Let .( .FGH) be reachable and lf atrztos

detectable. Assume that there is some K: X - U such that left factorizations.

(the characteristic polynomial of) F+ GK is stable. Then
W() has a proper stable right factorization. VI. THE CASE R = PRINCIPAL-IDEAL DOMAIN

Proof: The first part of the proof repeats that of
Theorem 4.2. up to (4.11). We use the same notations as The case in which R is a principal ideal domain is of

are used there. Now let special interest from a system-theoretic viewpoint, in par-
ticular, the ring RIO] of real coefficient polynomials is used

Q : =Q- KLT. (5.5) in applications to delay differential systems, "2-D'"-or
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"image processing' sstems (note: transfer matrices are w,.h, %hen (6.8)

no,, rational in the tmo variables 0. :.) and single-pararne-
ter families of s,,.stems. Rings of rational functions with no
real poles are used also for some of these applications. a This must be again reachable. i.e.. in the span of the

well as rings of rational functions RI(0)1. More generall\. columns of d. Comparing th rows gives that fodlo

other rings of functions in one variable also appear some- multiple of d.. from which (6.8) follows.

times. e.g.. the ring of real-anal\tic functions in 6: such Consider the system " obtained b, restriction to the
more general rings. although not necessarily pid', still reachable subset and a choice of basis for this subset. A

share many of the properties to be shown below. More concrete representation is - ( R". A. B.C). %A ith A -

precisel. for "elementar,, divisor rings" one can generalize D FD. B - 'G. and C = HD. Let /, (respectively. A,)

the results in this section: see Bumb, et al. 121 for the denote the submatrix obtained from the last i rows and
columns of F (respectively. A ). Since D is diagonal.

needed pole shifting results. Another pid of interest, the

ring of integers, appears naturallN in modeling fixed point det( -1 - F) det( :1 - A,) for all i. (6.9)

digital implementations of s stenis.
In this section. R denotew a ptd. Most statements can be We claim that 11 is detectable. Assume not. Then there is

considerably simplified in this case. and since the canonical maximal ideal Al of S 'R[z] .uch that

realization "( 14') of a transfer function is nece.ssaril\ pro- :*I A*

jective (in fact. free). factorability properties can be checked rank C* J < i (6.10)

directly on E( W ). We shall give first an elementary proof
of Theorem 4.27 which does not involve any restrictions on where the '*" is used to denote reduction modulo M. Thus

m. The intuitive idea is straightforward: given a regulable there is a vector t over the residue field mod M such that

sstem, restrict to its reachable subsystem. The nontrivial C*t ( I *)t-  0. Since C * = H*D*. also H*(D*t)

part is proving that this subsystem is indeed detectable. An 0. Since the original system is detectable. it follows that

easy lemma is needed. either
Lemma 6.1: Let " = ( F, G1. tt( be a factor system of :*1 - F*D*v - 0 (6.11)

E ( F G. H ). i.e.,.X"= Xex,, and

F=I 0] G G ' H (11,.D). (6.2) or

A .C D*t = 0. (6.12)

If 1 is asvcontrollable (respectively, detectable), then :, is But (6.11) cannot hold because D*(:*I- A*)t- = (:*! -

also asycontrollable (respectively, detectable). F*)D*t. Thus (6.12) must hold. Let r be the smallest

Proof: If Y. is asycontrollable. take stable rational nonnegative integer such that d,* = 0 for all i> r. (Note

m. ith that d,* =0 implies that d* = 0 for j>.) Let s be the

(_-1 - F)M + GN = I ( identitv in X) (6.3) largest integer such that t, =0 for i <s. Since D*t =0.
necessarily r - s. Since d7* 0 for j<r. but d,*=0 for

Let 1 be the projection of Ml on X. Then i >r. it follows that d,,. = 0 for these (i. j). By (6.8). the

identity corresponding f,* also vanish. So the submatn, tormed

(:1- F )M1  G.N ! ( =idenityinX 1 ) (6.4) from the last n - r rows aiA first r columns of F* is zero.

and A I is again stable. This is similarly the case for Similarly. the last n - r rows of G* are zero. By stabilizabil-
i detectability. := ity of E

Theorem 6.5: Let E be regulable. Then there is a system rank[:*I - F*.G*] n. (6.13)

. which is reachable and detectable. such that K'(2) =

so det(:*I,, ,-F,.)* 0. By (6.9) this holds also for

Proof: We may assume that =(R". F. G. H) is All r.. But

weakly reachable, i.e.. that the rank r of the span in (2.2) is

equal to n. (This is because a weakly reachable subsystem (*I,, r- A,, .)-=0 (6.14)

is always a factor of the original system: take X,: = kernel

of any map T of rank n - r which is zero on reachable where w is nonzero and consists of the last n - r rows of r.

states. and apply Lemma 6.1. Consider This contradicts the nonzero determinant. Thus (6.12) can-

not hold, and the theorem is established. 4t

() := [G. FG.' . ..F" 'G] (6.6) The following summarizes all the results for the pid case.

Theorem 6.15: The following statements are equivalent
and let D: = diag(d.....d,) be the Smith canonical form for a strictly proper transfer matrix W:

of g(l). where dd,. for i = 1. • ..n - I. Call d,,: = d,/d, I ) W has a regulable realization:

if i > j. By weak reachability, all d, are nonzero. Using an 2) W has a reachable and detectable realization:

appropriate T in GL( R. n). we may assume that 3) the canonical realization I( W) is detectable.

the columns of D span the reachable states. (6.7) 4) W has an asycontrollable and coreachable realiza-
tion;

Let F (f,,). We claim that 5) W has a stable right factorization,

...........................
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6) 14' has a stable left factorization: For the family of systems example, we take S' as in
7) 14" has a stable proper right factorization: (6.16). but we now use ': - set of pairs (s. t ) with r real
8) 11 has a stable proper left factorization. and with Re( ) 0.

Prowf By Theorem 6.5 and its dual. I) is equivalent to Lemma 6,21: For S' as above. . is asycontrollable if
2) and to 4). Since ( 14) is a factor of anN reachable and only if the condition in Lemma 6.17 holds over L'.
realization of 14'. Lemma 6.1 gives that 2) implies 3). which Proo:/ Again it suffices to find a suitable p passing
clearly implies I). The equivalence of 2) and 5) respec- through a given (*. t'*) not in L'. If Reo.)- 0. we take the
tivelN. 4) and 6)1 follows from Theorem 4.2 (respectivel.. same polknomial as before. If r is not real. consider the
Theorem 4.26). Finally. the equi'.alences of 7) and 8) with real pol'.nomial
5) and 6). respectively, follow from Theorem 5.4 and its h .): (.X - )(x - ). (6.22)
dual. .

This theorem shows that factorability can be checked by Note that there is a positive lower bound to the values of h
first constructing a canonical realization and then checking on reals. Thus there is a real A with kh(.)I Re( 0) for all
detectability of this. For pid's there are various algorithms real x. This implies that
for canonical realization: see. for instance. Rouchaleau and
Sontag 125] and Eising and Hautus 19]. Checking detecta- Re( %* kh( x)) 0 and Re. ( -- Ah(. -0 (6.23)
bility is of varying difficult. depending on the Hurwitz set for all real x. Let
considered. Two Nerv simple examples are that of pol'-
nomial families of continuous-time s'stems. and that of p(:. 0): (:-kh(O) -.*)(: -kh(O)- s*). (6.24)
delay-differential systems with arbitrary delay lengths. The
latter studies existence of regulators for delay sstems It is eas. to see that this is a real pol.nomial having

which are also described b delaN sxstems and such that. ( "r) as a root and [by (6.23)1 without roots in V. .

for each value of the delay length. stabilization is achieved. The above lemma says simply that as',controllabilit.
We are grateful to E. W. Kamen for suggesting this exam- (detectabilitv) of the familN i,(O) is equivalent to

pie to us: as he conjectured. it is much easier to treat than asycontrollabilit. (detectability1) for each individual s\stem.

the usual one (see a discussion in Hautus and Sontag (141 The results on systems over rings then imply that construc-
for detectability for a fixed delay length). In these exam- tions of compensators can be done polynomially in 0. This

pies, R = R[O]. means that when the general structure of a s,stem is

In the delay case then, take the Hurwitz set known except for the precise \alue of the parameter. one
may, be able it design (off line) a compensator such that

S:= p(O. :)I p monic in: andp has no zeroes in L only tuning the parameter is needed when the original

(6.16) plant is completely identified.
We construct over this ring a very simple example in

where L is the set of comr,!ex pairs (s. r ) with Re(.N ) 0 order to illustrate the various factorabilit\ conditions. Let
and I r I (see Kamen [1 8]. [ 191). a. h. t be three fixed real constants such that either c - 0 or
Lemma 6.17: For S as in (6.16). , is asvcontrollable if ab 0 0. Consider with m = p = 2 the transfer matrix 14

and only if rank sl - F(r). G( c)] =n for all (s. r) in L. over RIO] with entries
Proof: In the terminology of Hautus and Sontag [141.

we wvant to show that S is perfect. i.e.. that the only , = (a c82 ) (s - I) (6.25a)
maximal ideals of pr( R. S) are the obvious ones (e\alua- ,, (. - 8)[S O (0 - 0 1 - h)].
tions at points of L). For this it is enough to prove that. --
given any pair (s*. r*) not in L. there s a p in S having it (6.25b)
as a root. ", 0. (6.25c)

If Re(s)< 0. the polynomial (: - s*)(:- ,s*) (bar indi-
cates conjugation) achieves the above purpose. If I0I > I. We use the Laplace variable "s'" instead of":" in order to
then there is some integer n such that emphasize here that we are viewing (6.25) as a family of

continuous-time transfer matrices, parameterized by 8. The
k: =(r*) (s*I) (6.18) canonical realization has dimension 3 and is given up to

(and its conjugate) has magnitude less than 1. Let isomorphism by the system

1282n+ U,(6.26a)p(:. 8): = :+ 1)" + I k "- -2Re(k )(: + 1)0" X , = .r X, (62 a

(6.19a) X., = x, + (h + c.0 ).V, + U, (6.26b)

+(I+- kO")(:+I-kO"). (6.19b) xI =x, +(0- )X (6.26c)

By construction. p(s*. t'*) = 0 (first factor in (6.19b) + (a +-cO2 )x, (6.26d)
vanishes), while (6.19a) shows p has real coefficients. As- V, x,. (6.26e)
sumep has a zero (s. r) in L. Then

Is + I I = I k I t'". (6.20) This is indeed canonical: the determinant of

Since v [1. Re(s) E 0. a contradiction. [G. Fg,] (6.27)

S..4. -. -
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